- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Arndt, Kyle (2)
-
Göckede, Mathias (2)
-
Pallandt, Martijn_M_T A (2)
-
Basso, Luana S (1)
-
Bolek, Abdullah (1)
-
Celis, Gerardo (1)
-
Ivanova, Kseniia (1)
-
Jung, Martin (1)
-
Kuhn, McKenzie (1)
-
Mauritz, Marguerite (1)
-
Natali, Susan M (1)
-
Rogers, Brendan M (1)
-
Schlutow, Mark (1)
-
Schuur, Edward_A G (1)
-
Virkkala, Anna-Maria (1)
-
Virkkala, Anna‐Maria (1)
-
Vogt, Judith (1)
-
Wargowsky, Isabel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ecosystems at high latitudes are changing rapidly in response to climate change. To understand changes in carbon fluxes across seasonal to multi‐decadal timescales, long‐term in situ measurements from eddy covariance networks are needed. However, there are large spatiotemporal gaps in the high‐latitude eddy covariance network. Here we used the relative extrapolation error index in machine learning‐based upscaled gross primary production as a measure of network representativeness and as the basis for a network optimization. We show that the relative extrapolation error index has steadily decreased from 2001 to 2020, suggesting diminishing upscaling errors. In experiments where we limit site activity by either setting a maximum duration or by ending measurements at a fixed time those errors increase significantly, in some cases setting the network status back more than a decade. Our experiments also show that with equal site activity across different theoretical network setups, a more spread out design with shorter‐term measurements functions better in terms of larger‐scale representativeness than a network with fewer long‐term towers. We developed a method to select optimized site additions for a network extension, which blends an objective modeling approach with expert knowledge. This method greatly outperforms an unguided network extension and can compensate for suboptimal human choices. For the Canadian Arctic we show several optimization scenarios and find that especially the Canadian high Arctic and north east tundra benefit greatly from addition sites. Overall, it is important to keep sites active and where possible make the extra investment to survey new strategic locations.more » « less
-
Vogt, Judith; Pallandt, Martijn_M_T A; Basso, Luana S; Bolek, Abdullah; Ivanova, Kseniia; Schlutow, Mark; Celis, Gerardo; Kuhn, McKenzie; Mauritz, Marguerite; Schuur, Edward_A G; et al (, ESSD)Abstract. Our understanding of how rapid Arctic warming and permafrost thaw affect global climate dynamics is restricted by limited spatio-temporal data coverage due to logistical challenges and the complex landscape of Arctic regions. It is therefore crucial to make best use of the available observations, including the integrated data analysis across disciplines and observational platforms. To alleviate the data compilation process for syntheses, cross-scale analyses, earth system models, and remote sensing applications, we introduce ARGO, a new meta-dataset comprised of greenhouse gas observations from various observational platforms across the Arctic and boreal biomes within the polar region of the northern hemisphere. ARGO provides a centralised repository for metadata on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) measurements linked with an interactive online tool (https://www.bgc-jena.mpg.de/argo/). This tool offers prompt metadata visualisation for the research community. Here, we present the structure and features of ARGO, underscoring its role as a valuable resource for advancing Arctic climate research and guiding synthesis efforts in the face of rapid environmental change in northern regions. The ARGO meta-dataset is openly available for download at Zenodo (https://doi.org/10.5281/zenodo.13870390) (Vogt et al., 2024).more » « lessFree, publicly-accessible full text available November 13, 2025
An official website of the United States government
